An efficient GPU acceptance-rejection algorithm for the selection of the next reaction to occur for Stochastic Simulation Algorithms
نویسندگان
چکیده
Motivation: The Stochastic Simulation Algorithm (SSA) has largely diffused in the field of systems biology. This approach needs many realizations for establishing statistical results on the system under study. It is very computationnally demanding, and with the advent of large models this burden is increasing. Hence parallel implementation of SSA are needed to address these needs. At the very heart of the SSA is the selection of the next reaction to occur at each time step, and to the best of our knowledge all implementations are based on an inverse transformation method. However, this method involves a random number of steps to select this next reaction and is poorly amenable to a parallel implementation. Results: Here, we introduce a parallel acceptance-rejection algorithm to select the K next reactions to occur. This algorithm uses a deterministic number of steps, a property well suited to a parallel implementation. It is simple and small, accurate and scalable. We propose a Graphics Processing Unit (GPU) implementation and validate our algorithm with simulated propensity distributions and the propensity distribution of a large model of yeast iron metabolism. We show that our algorithm can handle thousands of selections of next reaction to occur in parallel on the GPU, paving the way to massive
منابع مشابه
A stochastic model for project selection and scheduling problem
Resource limitation in zero time may cause to some profitable projects not to be selected in project selection problem, thus simultaneous project portfolio selection and scheduling problem has received significant attention. In this study, budget, investment costs and earnings are considered to be stochastic. The objectives are maximizing net present values of selected projects and minimizing v...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملA new stochastic 3D seismic inversion using direct sequential simulation and co-simulation in a genetic algorithm framework
Stochastic seismic inversion is a family of inversion algorithms in which the inverse solution was carried out using geostatistical simulation. In this work, a new 3D stochastic seismic inversion was developed in the MATLAB programming software. The proposed inversion algorithm is an iterative procedure that uses the principle of cross-over genetic algorithms as the global optimization techniqu...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملUsing Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange
Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1404.0027 شماره
صفحات -
تاریخ انتشار 2014